Abstract
Engineering elastic constants and strength parameters shall be known to the designer in order to predict the structural response of composite materials. These properties shall be determined in various directions as per the designated standards. Testing of composite materials under the combined effect of in-plane shear and normal stress is of great importance. In this work, a new Arcan fixture has been designed, and then manufactured from aluminum alloy AA7075-T73. This test fixture can be used for uniaxial as well as biaxial testing of fiber reinforced polymers (FRPs) laminates in pure shear, and combined normal/shear stress states. Nevertheless, the fixture can be used for other materials where combined in-plane testing is required including metals and polymers. The special butterfly shape Arcan specimen was optimized based on the parametric study in ABAQUS environment by a Python scripting. The objective of the parametric study was to get a uniform shear stress field in the notch section of the specimen which is the cross-sectional area between the two opposite V-notch roots. The domain of the uniform shear stress-strain distribution in the notch section must be greater enough than the size of the strain gauge rosettes where these can be effectively installed for strain acquisition. The experimental set-ups for the realization of pure shear stress, normal stress, and combined normal/shear stress scenarios are schematically elaborated. The pure shear stress-strain response based on the Arcan test was compared with the tensile testing of ±450 symmetric laminate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.