Abstract
We propose a cost estimation model based on a fuzzy rule backpropagation network, configuring the rules to estimate the cost under uncertainty. A multiple linear regression analysis is applied to analyze the rules and identify the effective rules for cost estimation. Then, using a dynamic programming approach, we determine the optimal path of the manufacturing network. Finally, an application of this model is illustrated through a numerical example showing the effectiveness of the proposed model for solving the cost estimation problem under uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.