Abstract

This paper presents design guidelines for a microfin array heat sink using flow-induced vibration to increase the heat transfer rate in the laminar flow regime. Effect of the flow-induced vibration of a microfin array on heat transfer enhancement was investigated experimentally by comparing the thermal resistances of the microfin array heat sink and those of a plain-wall heat sink. At the air velocities of 4.4 and 5.5 m/s, an increase of 5.5 and 11.5%, respectively, in the heat transfer rate was obtained. The microfin flow sensor also characterized the flow-induced vibration of the microfin. It was determined that the microfin vibrates with the fundamental natural frequency regardless of the air velocity. It was also shown that the vibrating displacement of the microfin is increased with increasing air velocity and then saturated over a certain value of air velocity. Based on the numerical analysis of the temperature distribution resulting from microfin vibration and experimental results, a simple heat transfer model (heat pumping model) was proposed to understand the heat transfer mechanism of a microfin array heat sink. Under the geometric and structural constraints, the maximum heat transfer enhancement was obtained at the intersection of the minimum thickness of the microfin and constraint of the bending angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.