Abstract

In autonomous vehicles the driver will become a passenger. By ensuring a high level of ride comfort through active suspensions, the driver's ability to perform various tasks such as reading, drawing and texting can be enhanced. A high-performance shaker rig can conveniently be used to test the ride comfort improvement by means of various active suspensions under laboratory conditions. The paper deals with the design of such a rig, which employs a linear electric servomotor to impose accurately controlled vertical vibrations of driver seat. The reference time profiles of seat acceleration, velocity and displacement are generated off-line by using a half-car vehicle model and LQR control with a road preview option. The selection of linear motor comes from assessment of three characteristic shaker rig drive designs (hydraulic and two electric ones). To ensure high-precision seat motion, the proposed shaker control system includes: acceleration feedforward and feedback control loops, a state controller-like compensator of accelerometer offset to prevent drift of seat position and velocity, and feedforward compensation of linear motor cogging force mode. The designed shaker rig application is demonstrated through a case study related to ride comfort evaluation of various active suspension configurations and a drawing task. The drawing task results are employed to determine the root-mean-square vertical seat acceleration threshold, below which the active suspension drawing task performance remains similar to that obtained under standstill conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call