Abstract

Hydrogen compressors dominate the hydrogen refueling station costs. Metal hydride based thermally driven hydrogen compressor (MHHC) is a promising technology for the compression of hydrogen. Selection of metal hydride alloys and reactor design have a great impact on the performance of the thermally driven MHHC. A thermal model is developed to study the performance characteristics of the two-stage MHHC at different operating conditions. The effects of heat source temperature and hydrogen supply pressure on the compression ratio and isentropic efficiency are investigated. Finite volume method is used for discretizing the reaction kinetics, continuity, momentum and energy equations. Metal hydrides selected for this analysis are Mm0.2La0.6Ca0.2Ni5 and Ti1.1Cr1.5Mn0.4V0.1. The thermal model was validated with the results extracted from an experimental study. Validation results demonstrated that the numerical results are in good agreement with the data reported in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call