Abstract

Hydrogenation of metals is an exothermic and reversible process. Thus, metal hydride reactors/devices become essentially heat-driven. Excellent heat control in the MH reactor is required to develop metal hydride devices such as H2 storage systems successfully. Few attempts at nature-inspired designs have proven to have good heat transfer capabilities. Based on this idea, the present study investigates novel bio-inspired leaf-vein type fins for the metal hydride reactor. Two reactor designs are proposed for heat transfer fluid flow, namely (i) central straight tube and (ii) narrow trapezoidal channels with 10 kg of LaNi5 as a sample alloy. Compared to longitudinal finned single tube reactors (LFSTR), these designs provided better heat transmission and temperature uniformity. For LFSTR, Case-1, and Case-2, 90% storage capacity was reached in 210, 145, and 80 s. Different fin configurations, such as parallel, inclined fins, and fins of different thicknesses, are investigated further in the design with narrow trapezoidal channels. The inclined fin configuration shows better performance, and it is further optimized by varying the inclination angle from 3 to 9° and the fin number from 2 to 4. The optimized design with a 7° inclination angle and four fins required 57 s to attain 90% storage capacity and reduced absorption time by 73% compared to LFSTR. The influence of operating parameters such as hydrogen supply pressure, inlet temperature, and velocity of the heat transfer fluid on the performance is evaluated for the optimized design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call