Abstract

This paper reports the design and theoretical calculation of a capacitive ultra-low pressure sensor, which is based on circular suspend graphene diaphragm array. The atom scale thickness and high mechanical strength of suspend graphene diaphragm both contribute to ultra-low pressure measure range. As the size of single suspend graphene diaphragm is limited by fabrication process, a parallel connected sensor array is designed to achieve detectable capacitance change and redundancy. In calculation, a sensor array with 40,000 5µm radius suspend graphene diaphragm cells in 4mm×4mm size can provide 288fF/Pa sensitivity to pressure load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.