Abstract

In recent years, artificial intelligence (AI) has made highly accurate demand forecasting possible. However, improving forecast accuracy does not necessarily mean reducing inventory costs or improving service levels in supply chain and inventory management, which are closely related to demand forecasting. Workers require not only high accuracy but also a basis for making decisions a based on forecasts. Autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) are demand forecasting methods with high accuracy and interpretability. However, these methods cannot provide evidence for demand fluctuations such as trends and seasonality, although they exhibit an autoregressive time-series structure. In this study, a framework for demand forecasting with high accuracy and interpretability was designed using time series decomposition and ARIMA to support decision makers in demand forecasting. The Seasonal-trend decomposition using locally estimated scatterplot smoothing (STL) is used to decompose a time series into three components trend, seasonality, and residual to provide decision makers with an easily understandable basis for demand changes. In addition, the ARIMA model is used for trends and residuals to achieve highly accurate forecasts. Comparing the prediction accuracies of the proposed STL-ARIMA and SARIMA models shows that STL-ARIMA has higher interpretability than the SARIMA model and the same accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call