Abstract
With the rapid development of e-commerce, precise demand forecasting and efficient inventory management have become essential for the success and profitability of retail businesses. This study focuses on demand forecasting for e-commerce retailers using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model and the K-means clustering algorithm. The research utilizes a dataset containing 1996 time series of sales data from various products, merchants, and warehouses, aiming to predict demand changes for the next 15 days. The study initially evaluates three models—Linear Regression (LR), Autoregressive Integrated Moving Average (ARIMA), and SARIMA—by fitting them to historical sales data to forecast future demand. The SARIMA model is identified as the most effective through rigorous evaluation using 1-mWAPE (mean weighted absolute percentage error) and RMSE (root mean square error) metrics. To enhance homogeneity within demand categories, the K-means clustering method is applied to divide products into four distinct groups, further refining the forecasting process.The paper also addresses the challenge of integrating new sequences into the dataset by leveraging clustering results to classify sequences and using cosine similarity to identify analogous historical time series. These matched sequences serve as the basis for demand prediction using the established SARIMA model. The findings highlight the robustness of the SARIMA model in capturing trends and seasonality, providing a reliable framework for e-commerce demand forecasting that can significantly impact inventory strategies and operational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.