Abstract

Sound rendering applications are data-intensive and memory-intensive as a sound space increases. To speed up computation and extend the simulated area, a sound rendering system based on the two-dimensional Digital Huygens Model (DHM) with timing sharing architecture is designed and implemented by a Field Programmable Gate Array (FPGA) chip XC5VLX330T. Compared with the DHM system with the traditional parallel architecture, the proposed system implemented by a FPGA chip extends about 20 times in simulated area, and speeds up 1.47 times against the software simulation carried out in a computer with an AMD Phenom 9500 Quad-core processor (2.2 GHz) and 4GB RAM. The system is relatively easy to cascade many FPGA chips to work in parallel in real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.