Abstract

This paper discusses the design of a model reference type of adaptive control system for a linear unknown plant with system and observation disturbances. The disturbances are assumed to be approximately expressed by step, sinusoidal, and other analytical functions. The design of a controller, called a disturbance accommodating adaptive controller (DAAC), which eliminates the effect of these disturbances at the plant output, is described. Two types of bias DAAC are given as examples and are applied to the adaptive control of a DC-servo motor system. The plant (the DC-servo system) consists of two unknown loads connected through an electrical clutch and Coulomb friction. The effect of the friction on the plant is considered as an unknown bias disturbance and the DAAC is implemented on an analog computer. Experimental results for the position control of the DAAC system are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.