Abstract

Loop-mediated isothermal amplification (LAMP) is a rapid and high-yield amplification technology for specific DNA or RNA molecules. In this study, we designed a digital loop-mediated isothermal amplification (digital-LAMP)-functioning microfluidic chip to achieve higher sensitivity for detection of nucleic acids. The chip could generate droplets and collect them, based on which we could perform Digital-LAMP. The reaction only took 40 min at a constant temperature of 63 °C. The chip enabled highly accurate quantitative detection, with the limit of detection (LOD) down to 102 copies μL-1. For better performance while reducing the investment of money and time in chip structure iterations, we used COMSOL Multiphysics to simulate different droplet generation ways by including flow-focusing structure and T-junction structure. Moreover, the linear structure, serpentine structure, and spiral structure in the microfluidic chip were compared to study the fluid velocity and pressure distribution. The simulations provided a basis for chip structure design while facilitating chip structure optimization. The digital-LAMP-functioning chip proposed in the work provides a universal platform for analysis of viruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.