Abstract
Based on the resonance fluorescence scattering mechanism, a narrowband sodium (Na) lidar can measure temperature and wind in the mesosphere and lower thermosphere (MLT) region. By using a narrowband spectral filter, background light noise during the day can be suppressed, allowing for continuous observations. To obtain full-diurnal-cycle temperature and wind measurement results, a complex and precise retrieval process is required, along with necessary corrections to minimize measurement errors. This paper introduces the design of a data acquisition unit for three frequencies in three directions of the Na lidar system in the Chinese Meridian Project (Phase II) and investigates the calibration and retrieval methods for obtaining diurnal temperature and horizontal wind in the MLT region, using a Na Doppler lidar with Faraday anomalous dispersion optical filter (FADOF). Furthermore, these methods are applied to observations conducted by a Na lidar in Beijing, China. The wind and temperature results over full diurnal cycles obtained from the all-solid-state Na Doppler lidar are reported for the first time and compared with temperature measurements from satellite, as well as wind observations from a meteor radar. The comparison demonstrates a reasonable agreement between the results, indicating the rationality of the lidar-retrieved results and the feasibility and effectiveness of the data correction and retrieval method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.