Abstract

The idea of a curved stabilizer with damping orifices is applied to the high speed rotating flexible optical disk system in order to reduce the disk deflection and the axial run-out of the disk. A track of orifices is drilled along the edge of a curved annular stabilizer. The effects of the diameter and length of each orifice, number of orifices, and radial position of the orifices on the reduction of axial run-out of the disk are investigated experimentally together with the effects of the inner radius for the air flow, initial gap height, and rotational speed. The experimental results showed that the curved stabilizer with orifices can reduce the axial run-out of the disk at 10,000 rpm within 10 µm over the entire span of the disk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call