Abstract

A flexible optical disk system, which consists of a thin optical disk and a rigid stabilizer, has recently introduced as the next-generation optical storage media. The present work introduces a new design for the stabilizer that helps to hold the rotating flexible optical disk almost flat and thereby reducing its axial run-out at high rotational speeds; the new design incorporates an axisymmetrically curved active surface of the stabilizer. The combination of the stabilizer curvature and disk rotation generates moderate air-film forces that balance the disk mechanical forces and reduces the disk axial run-out considerably. With a proper combination of the stabilizer geometrical parameters, the out-of-flatness as well as the axial run-out of the disk could be reduced to less than 10 µm. The significant decrease in the axial run-out at rotational speed of 10,000 rpm is primarily due to the flatness of the disk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call