Abstract

In the fields of medicine and biology, it is essential to realize fine manipulation. Therefore, micromanipulation techniques and micromanipulators such as microgrippers and optical tweezers have been developed. We have developed a two-fingered microhand which is using the parallel mechanism to realize precise and stable micromanipulation. In this paper, we report the design of a compact 3-DOF microhand system with a large workspace. This microhand contains a new parallel mechanism and its characteristic is utilizing the singularity of the parallel mechanisms. We establish an analytic theory for the proposed microhand, and we analyze the workspace. Also, we draw the CAD data to realize the system in 3D. The workspace of the proposed microhand is larger than previous microhands as far as simulation results shows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.