Abstract

Lower stiffness can improve the performance of capacitive-based microelectromechanical systems sensors. In this paper, softened beams, achieved by the electrostatic assembly approach, are proposed to lower the stiffness of a capacitive MEMS accelerometer. The experiments show that the stiffness of the accelerometer is reduced by 43% with softened beams and the sensitivity is increased by 72.6%. As a result, the noise of the accelerometer is reduced to 26.2 μg/√Hz with an improvement of 44.5%, and bias instability is reduced to 5.05 μg with an enhancement of 38.7%. The electrostatic assembly-based stiffness softening technique is proven to be effective and can be used in many types of MEMS devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call