Abstract

The buffering in Mobile Ad hoc Networks (MANETs) will depend on end-to-end delay of every user’s information from the arrival time of the resource node which is waiting for the receiving time-span of the destination node. Normally each base station will act as relay node or repeater for different mobile nodes as well as for different base stations. Deployment of base station in the MANET is also a critical research. Each base station contain large number of nodes which is connected based on peer-to- peer communications. Dynamic queuing method is used to share the traffic load to various paths which are selected according to the least buffer size; that increases the packet delivery of the network. Dynamic queuing method is used to reduce the overall waiting time of the packets in the network. In this paper, we propose Buffer Enabled Ad hoc On-demand Multipath Distance Vector (BE-AOMDV) algorithm, that generates the routing protocol with Bernoulli model and find that the packet information minimizes the average end-to-end delay. By using periodic updates on the buffer information of the nodes in the paths, the nodes can take dynamic decisions regarding the help of better routes in the data transmission which can lead to even better use of resources of the network. Buffer Enable Multipath Routing is compared with other multipath routing techniques. Furthermore, using perceptive simplifications, we find that the effect of buffers in networks increases the throughput although incongruously considering average end-to-end delay. During widespread simulations, our simulation results proved that the network with the appearance of data stream circumstance improves using Bernoulli function and the proposed method has the increased throughput compared to other related methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.