Abstract

AbstractThis paper presents the design, modeling, and control of a novel soft-rigid knee joint robot (SR-KR) for assisting motion. SR-KR is proposed to assist patients with knee joint injuries conducting gait training and completing walking movements. SR-KR consists of a novel soft-rigid bidirectional curl actuator, a thigh clamping structure, and a crus clamping structure. The actuating part of SR-KR is composed of soft materials, which ensures the wearing comfort and safety, while the wearing parts contain rigid structure, which ensures the efficient transmission of torque. The bending deformation model of SR-KR is established, which reveal the relationship among SR-KR’s bending curvature, working pressure, and output torque. Experiments show that SR-KR can provide more than 26.3 Nm torque for knee joint motion in human gait range. A double closed loop servo control system including attitude servo and pressure servo is built to better apply SR-KR. Mechanical property test, trajectory-driven test, and lower limb wearing test have been conducted, which show that SR-KR has ability to assist in lower limb motion and has potential in the fields of rehabilitation and human enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call