Abstract

Although grid-connected transformerless photovoltaic (PV) inverters present higher efficiency and power density compared with inverters with a transformer, the leakage current caused by the inverter common-mode voltage introduces several problems. Among the techniques to reduce the leakage current, the modified LCL (MLCL) filter with passive damping is an effective and simple solution. However, the classical design of the filter damping resistance is not adequate for ensuring both proper leakage current attenuation and control system stability. Therefore, this study proposes a methodology to design the resistance in a low-loss passive damping structure applied to the MLCL filter. In addition to the conventional specifications for LCL-type filters, this study includes the leakage current limit in the design procedure. Simulation and experimental results for a 10 kW PV inverter show the damping resistance impact on the leakage current. The results related to the efficiency and grid inductance variation are also presented. Therefore, it is possible to conclude that the proposed design methodology is very useful for obtaining a damping resistance that ensures control system stability and a leakage current in conformity with PV standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.