Abstract
Gear skiving is a highly productive method for manufacturing gears, especially internal gears. Circular arc internal gears are important parts of Rotary Vector (RV) reducers and harmonic reducers. This study presents the implementation of the gear skiving technique using a cylindrical tool to enhance the precision and efficiency of machining circular arc internal gears. By establishing the mathematical model for skiving a circular arc internal gear based on the conjugation theory of two surfaces, the barrel-shaped conjugate surface was solved by deducing gear meshing equations. A design method is proposed for a cylindrical skiving tool by utilizing the barrel-shaped conjugate surface with an off-center tool position along the axis. The cutting edge of the tool rake face was then obtained through cubic spline interpolation from the conjugate surface. The influence of the tool rake face offsets on the cutting rake angle and clearance angle is also discussed by defining the normal cutting plane of the tool. The correctness of the proposed cylindrical skiving tool was validated through simulation and actual skiving experiments. The experimental results demonstrated that the tooth profile error of the gear fell within ±0.004 mm, thereby satisfying the accuracy requirement for pin wheel housing gears. These research findings can contribute to advancements in novel cylindrical skiving tools.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have