Abstract
Since the neuraminidase (NA) enzyme of the influenza A virus plays a key role in the process of release of new viral particles from a host cell, it is often a target for new drug design. The emergence of NA mutations, such as H275Y, has led to great resistance against neuraminidase inhibitors, including oseltamivir and zanamivir. Hence, we herein designed a set of derivatives by modifying the amine and/or carboxylic groups of oseltamivir. After being screened for their physicochemical (Lipinski's rule) and toxicological properties, the remaining compounds were submitted to molecular and theoretical studies. The docking simulations provided insights into NA recognition patterns, demonstrating that oseltamivir modified at the carboxylic moiety and coupled with anilines had higher affinity and a better binding pose for NA than the derivatives modified at the amine group. Based on these theoretical studies, the new oseltamivir derivatives may have higher affinity to mutant variants and possibly to other viral subtypes. Accordingly, two compounds were selected for synthesis, which together with their respective intermediates were evaluated for their cytotoxicity and antiviral activities. Their biological activity was then tested in cells infected with the A/Puerto Rico/916/34 (H1N1) influenza virus, and virus yield reduction assays were performed. Additionally, by measuring neuraminidase activity with the neuraminidase assay kit it was found that the compounds produced inhibitory activity on this enzyme. Finally, the infected cells were analysed with atomic force microscopy (AFM), observing morphological changes strongly suggesting that these compounds interfered with cellular release of viral particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.