Abstract

Intensive scaling for VLSI circuits is a key factor for gaining outstanding performance. However, this scaling has huge negative impact on the circuit reliability, as it increases the undesired effect of aging degradation on ultradeep submicrometer technologies. Nowadays, Bias Temperature Instability (BTI) aging process has a major negative impact on VLSI circuits reliability. This paper presents a comprehensive framework that assists in designing the fortified VLSI circuits against BTI aging degradation. The framework contains: 1) the novel circuit level techniques that eliminate the effect of BTI (these techniques successfully decrease the power dissipation by 36% and enhance the reliability of VLSI circuits); 2) the evaluation of the reliability of all circuit level techniques used to eliminate BTI aging degradation for 16 nm CMOS technology; and 3) the comparison between the efficiency of all circuit level techniques in terms of power consumption and area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.