Abstract

ABSTRACTSequential experiments composed of initial experiments and follow-up experiments are widely adopted for economical computer emulations. Many kinds of Latin hypercube designs with good space-filling properties have been proposed for designing the initial computer experiments. However, little work based on Latin hypercubes has focused on the design of the follow-up experiments. Although some constructions of nested Latin hypercube designs can be adapted to sequential designs, the size of the follow-up experiments needs to be a multiple of that of the initial experiments. In this article, a general method for constructing sequential designs of flexible size is proposed, which allows the combined designs to have good one-dimensional space-filling properties. Moreover, the sampling properties and a type of central limit theorem are derived for these designs. Several improvements of these designs are made to achieve better space-filling properties. Simulations are carried out to verify the theoretical results. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.