Abstract
A novel compact coplanar waveguide (CPW)-fed planar monopole antenna with triple-band operation is presented for simultaneously satisfying the LTE 2600, WiMAX, WLAN and X-band applications. It is printed on a single-layered FR4 substrate. In this paper, the proposed antenna, which occupies a small volume of [Formula: see text][Formula: see text]mm3 including the ground plane, is simply composed of a CPW-fed monopole with U-, L- and T-shaped slots. By carefully selecting the lengths and positions of both L-shaped and U-shaped slots, a good dual notched band characteristic at center-rejected frequencies of 3.10[Formula: see text]GHz and 4.50[Formula: see text]GHz can be achieved, respectively. The T-shaped slot is etched on the radiating element to excite a resonant frequency in the 7[Formula: see text]GHz band. Then, to prove the validation of the typical design, a prototype model is fabricated and measured. The experimental result shows that the three frequency bands of 2.31–2.80[Formula: see text]GHz (490[Formula: see text]MHz), 3.37–3.84[Formula: see text]GHz (470[Formula: see text]MHz) and 5.04–7.94[Formula: see text]GHz (2900[Formula: see text]MHz) can successfully cover the desired bandwidths of LTE2600/WiMAX (3.50/5.50[Formula: see text]GHz)/WLAN (5.20/5.80[Formula: see text]GHz) and the X-band communication systems (7.1-GHz operation). The principal applications of the X-band are radar, aircraft, spacecraft and mobile or satellite communication system. Nearly omnidirectional and bidirectional radiation patterns of the triband antenna are observed in both H- and E-planes, respectively. In addition, a reasonable gain over the operating bands has been obtained. Indeed, the good agreements between simulation and measurement results have validated the proposed structure, confirming its potential for multiband wireless communication services.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.