Abstract

The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats (Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.