Abstract

We investigate how unmanned aerial vehicles (UAVs) with flexible wings can be designed to exploit the aeroelasticity of wing deformation that is present in bat wings, with a view to improve the efficiency of flight. We constructed a robotic bat wing with fully passive elastic wing-folding properties. The robotic wing is powered by a gearbox running two synchronised motors, effectively providing one degree of motion: the upstroke and down-stroke of the wing. Through numerical simulations and setup experiments, we observed that by integrating a span-wise elastic network into the bat wing, we were able to achieve passive wing-folding that mimics the 8-shape wing-folding seen in bats' high speed flight. This way, we were able to reduce the complexity and additional actuation associated with wing-folding in a robotic wing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call