Abstract

The use of high speed milling (HSM) for the production of moulds and dies is becoming more widespread. Critical aspects of the technology include cutting tools, machinability data, cutter path generation and technology. Much published information exists on cutting tools and related data (cutting speeds, feed rates, depths of cut, etc.). However, relatively little information has been published on the optimisation of cutter paths for this application. Most of the research work is mainly focused on cutter path generation with the main aim on reducing production time. Work with regards to cutter path evaluation and optimisation on tool wear, tool life, surface integrity and relevant workpiece machinability characteristics are scant. Therefore, a detailed knowledge on the evaluation of cutter path when high speed rough and finish milling is essential in order to improve productivity and surface quality. The paper details techniques used to reduce machining times and improve workpiece surface roughness/accuracy when HSM hardened mould and die materials. Optimisation routines are considered for the roughing and finishing of cavities. The effects of machining parameters notably feed rate adaptation techniques and cutting tools are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call