Abstract
We present a novel methodology for the design of miniature lumped element components embedded in a low-temperature co-fired ceramic (LTCC) package. The entire process, from initial schematic design, through individual element design, to complete device optimization is discussed. The design and fabrication of novel miniature lumped element LTCC filters is used to validate the proposed methodology. Commercial software tools are used to accurately model and simulate all aspects of the devices to ensure design success. In addition, the filters occupy only 0.03 lambda times 0.05 lambda times 0.004 lambda of a conventional low-permittivity LTCC substrate, which is among the smallest sizes reported. An advantage of these filters is that they use a true third-order topology with three multilayer L-C resonators, leading to superior stopband performance. For the first time, measured results are shown for two new bandpass filters targeted for global positioning system applications. Measured results are in good agreement with the simulations and show an insertion loss of 2.8 dB and a return loss of 21.3 dB at the center frequency of 1.64 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.