Abstract

BackgroundFunctionality and versatility of microprocessor-controlled stance-control knee-ankle-foot orthoses (M-SCKAFO) are dictated by their embedded control systems. Proper gait phase recognition (GPR) is required to enable these devices to provide sufficient knee-control at the appropriate time, thereby reducing the incidence of knee-collapse and fall events. Ideally, the M-SCKAFO sensor system would be local to the thigh and knee, to facilitate innovative orthosis designs that allow more flexibility for ankle joint selection and other orthosis components. We hypothesized that machine learning with local sensor signals from the thigh and knee could effectively distinguish gait phases across different walking conditions (i.e., surface levels, walking speeds) and that performance would improve with gait phase transition criteria (i.e., current states depend on previous states).MethodsA logistic model decision tree (LMT) classifier was trained and tested (five-fold cross-validation) on gait data that included knee flexion angle, thigh-segment angular velocity, and thigh-segment acceleration. Twenty features were extracted from 0.1 s sliding windows for 30 able-bodied participants that walked on different surfaces (level, down-slope, up-slope, right cross-slope, left cross-slope) at a various walking speeds (self-paced (1.33 m/s, SD = 0.04 m/s), 0.8, 0.6, 0.4 m/s). The LMT-based GPR model was also tested with another validation set containing similar features and surfaces from 12 able-bodied volunteers at self-paced walking speeds (1.41 m/s, SD = 0.34 m/s). A “Transition Sequence Verification and Correction” (TSVC) algorithm was applied to correct for continuous class prediction and to improve GPR performance.ResultsThe LMT had a tree size of 1643 with 822 leaf nodes, with a logistic regression model at each leaf node. The local sensor LMT-based GPR model identified loading response, push-off, swing, and terminal swing phases with overall classification accuracy of 98.38 for the initial training set (five-fold cross-validation) and 90.60% for the validation set. Applying TSVC increased classification accuracy to 98.72% for the initial training set and 98.61% for the validation set. Sensitivity, specificity, precision, F-score, and Matthew’s correlation coefficient results suggest strong evidence for the feasibility of an LMT-based GPR system for real-time orthosis control.ConclusionsThe novel machine learning GPR model that used sensor features local to the thigh and knee was viable for dynamic knee-ankle-foot orthosis-control. This highly accurate GPR model was generalizable when combined with TSVC. Our approach could reduce sensor system complexity as compared with other M-SCKAFO approaches, thereby enabling customizable advantages for end-users through modular unit orthosis designs.

Highlights

  • Stance-Control Knee-Ankle-Foot Orthoses (SCKAFO) are wearable walk-assist devices that prevent the knee from collapsing during weight-bearing and provide unhindered knee motion during swing

  • Each volunteer walked in a custom-built virtual park application on level (LG), 7° declination down-slope (DS), 7° inclination up-slope (US), 5° inclination right cross-slope (RS), and 5° inclination left cross-slope (LS), at self-paced (SP) speed (1.33 m/s, SD = 0.04 m/s), 0.8 m/s, 0.6 m/s, and 0.4 m/s

  • This research demonstrated the viability of a local sensor, machine learning-based, gait phase recognition system to guide decision-making for orthosis-control and safe mobility

Read more

Summary

Introduction

Stance-Control Knee-Ankle-Foot Orthoses (SCKAFO) are wearable walk-assist devices that prevent the knee from collapsing during weight-bearing and provide unhindered knee motion during swing. Most mechanically-controlled SCKAFO require full knee extension to engage knee-lock [4, 5, 8] This can present difficulties for individuals who cannot extend their leg at each step, making continuous and reliable stance-control more difficult. Persons with knee-extensor weakness that have sufficient hip-flexion control could use angular velocity based stance-control [3, 8, 9], where mechanical components at the knee engage knee-flexion resistance at any knee angle once an angular velocity threshold is passed, such as during a knee collapse or fall event (i.e., body weight sensing not required). We hypothesized that machine learning with local sensor signals from the thigh and knee could effectively distinguish gait phases across different walking conditions (i.e., surface levels, walking speeds) and that performance would improve with gait phase transition criteria (i.e., current states depend on previous states)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call