Abstract

In this paper the design, manufacturing and automation of a micro hydroelectric power plant (MHPP) prototype has been carried out. The experimental setup consists of three 1 kW synchronous generators (SGs) working in synchronization with each other and with the grid, three Pelton turbines with a single nozzle manufactured using a 3D printer, a water tank with a capacity of approximately one ton, a 5.5 kW centrifugal pump providing appropriate flow and head conditions and an 11 kW driver controlling the speed of this pump. The mechanical and electrical structure of the system and its working scenario are designed to be the closest to a real MHPP. S7-1200 PLC (Programmable Logic Controller) is used in order to control the voltage and frequency values of synchronous generators according to the load as well as for other control processes. In this study, PID control method is preferred for frequency and voltage control. It is possible to control and monitor the whole system through SCADA (Supervisory Control and Data Acquisition) screens. The results have been evaluated by obtaining frequency-time, voltage-time, active power-valve opening, excitation current-reactive power graphs of synchronous generators under different load conditions and in single, local and synchronous operating modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call