Abstract
Large bandwidths at terahertz (THz) frequencies higher than 100 GHz have been garnering significant attention as key enablers for future wireless networks to provide data rates in the range of terabits per second, which is approximately one hundred times higher than the transmission rate of millimeter wireless systems. To fully utilize the merits of THz frequencies, devices with large operating bandwidths are highly desired. From this perspective, promising choices are photonic devices developed for fiber-optic communications, which have been commonly used since the early stages of THz communications research with different architectures and parameters. However, the factors limiting the performance of photonics-based THz systems have not yet been investigated thoroughly in terms of general system aspects. Here, we comprehensively analyze and compare various potential THz communications systems with a photonics-based THz transmitter. Based on modulation and optical light sources, we characterize the three most typical architectures and theoretically and experimentally analyze the impact of optical and phase noise on system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.