Abstract
AbstractRecently, the technology buzz on utilization of terahertz (THz) technology in beyond 5G and 6G communication is growing due to the demands for large network capacity, bandwidth, and ultrahigh data rates. The THz frequencies are prudent for short‐range future wireless communication systems as they provide extraordinary channel capacity with data rates from few Gb/s to Tb/s due to its ultra‐wide spectrum bandwidth. However, there exists many challenges in designing devices that operate under THz frequencies. The photo‐conductive antenna (PCA) is one of the crucial components that support realization of ultrafast wireless THz communications. In this paper, investigations on photoconductive antennas with interdigitated electrodes (IDEs) have been presented for THz communications with an equivalent circuit model for IPCA with corresponding solved expressions. The results show that the maximum THz field strength of 4.41 × 105 V/m is achievable by a 10 μm interdigitated teeth length IPCA with larger spectrum bandwidth of about ~8 THz. The antenna module makes the possibility of miniaturization of the THz sources and detectors for the emerging variety of wireless THz applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.