Abstract

Realization of high-speed avalanche photodiodes (APDs) requires the use of thin avalanche regions to reduce carrier transit time. A systematic investigation on the effect of dead space on the current impulse response and bandwidth of short APDs was carried out using a random path length model assuming a constant carrier velocity. The results indicate that, although dead space suppresses large multiplication values in a short device to give low excess noise, the number of impact ionization a carrier can undergo in a single transit is reduced. Consequently, multiple carrier feedback processes are necessary to achieve a given multiplication value. This results in an increase in the response time and reduces the bandwidth of short APDs. Conventional local models that take no account of the dead space effect will tend to overestimate the operating speed of these devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call