Abstract

We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, π +→π 0e +ν e, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering ∼3 π sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure, which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two 3-month beam periods in 1999/2000 with π + stopping rates between 1.3·10 3 π +/ s and 1.3·10 6 π +/ s . We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5– 150 MeV , as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.