Abstract
There are wide ranges of transformers for voltage stabilizer. The autotransformers used in the voltage stabilizers are designed and constructed under design specifications of standard assumptions. In this work, core components of autotransformer are designed using power rating as only input parameter, nevertheless, taking into consideration of standard assumptions. The bounded area of the flux of magnetic field forms basis for core area of electromagnetic induction of transformer. The core area of the electromagnetic induction and window area of transformer for housing copper windings, thus, have linkage with power rating and e.m.f equation of the transformer. Accordingly, we establish a relationship, in the form of equation, between core area and window area. The product of core area and window is equated to the numerical value of the product that has been determined from the power rating and standard assumptions of other design parameters. With the help of proportional relationship, standard as well as from aspect of desired look of the transformer, between length and breadth of the core area and similarly for window area, the dimensions of the core components of the transformer are designed. The designed parameters are tested for feasibility and a transformer under the designed parameters is constructed to validate the experimental result with the theoretical values of the parameters of the transformer. This design is used to determine accurate dimensions of core components of transformer of desired power rating and desired look. This design aspect minimizes waste of core material in fabrication of core components and help in proper lamination of components such as E & I of the transformer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.