Abstract

Gears have wide range application areas in various industries which no matter they are small-scaled or large-scaled. As a part of their design, gears inner bodies are full filled with their solid material and significantly increase the weight of systems which they used in. If the weight of gears’ body mass can be decrease during their design process, the mechanical properties that expected from the systems can be achieved with the minimum cost of material via additive manufacturing comparing to the traditional manufacturing processes. First ideas which comes to mind presents two choices for the way should follow. This study focused on design optimization of material layout rather than material selection. Generative design technic also known as topology optimization can create new designs via mathematical methods that optimize material layouts within a specific design space. Absolute geometry is depending on various parameters such as given set of loads, boundary conditions and constraints. Alternatively, lattice structures are designs which inspired from bio-entities based on repeating unit cells. As a result of static analysis of a helical gear’ s uniform lattice structure, output parameters have been used for varying unit cells’ beam thickness and optimize lattice design. End of this study which used nTopology as engineering software for whole implicit design and analysis process, the analysis of generative designed geometry and pattern of lattice structure gave different results. These outputs compared on point of weight savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call