Abstract

The unprecedented increase in component design space has led to significant focus on fusion-based additive manufacturing (AM) technologies. The new design possibilities integrate features and functionalities that are not supported by conventional manufacturing, and simultaneously achieve unitization of components. However, fusion-based AM suffers from a lack of diverse alloys, as conventional high-strength Al alloys are prone to hot cracking and other defect formation during printing. New alloy design approaches are being pursued to overcome these limitations. Current strategies for design of printable Al alloys for laser-powder bed fusion (L-PBF) are primarily experimental and revolve around grain refinement and eutectic solidification (ES). Each of these strategies targets hot cracking at only a specific stage of solidification. Consequently, the processing window of the alloy shrinks and fine-tuning of the alloy microstructure becomes difficult, thus prohibiting the activation of multiple deformation mechanisms. On the other hand, strategies that integrate microstructural refinement (MR) and ES attack the problem during multiple stages of solidification. Such MR+ES integrated alloy design strategies allow widening of alloy-processing-window (printability) and activation of multiple deformation mechanisms such as back-stress strengthening and work-hardening, thus producing alloys with excellent synergy of printability and performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.