Abstract

Required microstructural attributes of an alloy vary with structural applications. The microstructural fine-tuning capability of laser-powder bed fusion (L-PBF) additive manufacturing (AM) enables application specific manufacture of the components. Such manufacture with L-PBF AM requires alloys that exhibit wide processing window and are amenable to multiple deformation mechanisms. However, high hot cracking susceptibility of Al alloys poses a barrier to such printability-performance synergy. In this work we show that an integration of, a) grain refinement through heterogeneous nucleation, and b) eutectic solidification, leads to crack-free parts at wide range of process parameters, microstructural heterogeneity, and hierarchy in the Al-Ni-Ti-Zr alloy. Such an integration targets hot cracking at multiple stages of solidification in L-PBF as opposed to the contemporary alloy design strategies that target hot-cracking at only specific stages of solidification. The Al-Ni-Ti-Zr alloy exhibits excellent printability and a high as-built tensile performance. Due to the wide processing window and amenability to multiple deformation mechanisms, the alloy microstructure and subsequently the performance, can be fine-tuned. Such strategy opens the gateway for application-specific manufacture of Al alloys with L-PBF AM and establishes a fundamental shift in current methodologies for design of these alloys for L-PBF AM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.