Abstract

Force measurement is crucial in numerous engineering applications, while traditional force sensors often face problems such as elevated expenses or significant measurement errors. To tackle this issue, we propose an innovative force sensor employing three nested flexible rings fabricated through 3D additive manufacturing, which detects external forces through the displacement variations of flexible rings. An analytical model on the basis of the minimal energy method is developed to elucidate the force-displacement correlation with nonlinearity. Both FEM simulations and experiments verify the sensor's effectiveness. This sensor has the advantages of low expenses and easy manufacture, indicating promising prospects in a range of applications, including robotics, the automotive industry, and iatrical equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.