Abstract

Biomarkers play an increasingly important role for drug efficacy and safety evaluation in all stages of drug development. It is especially important to develop and validate sensitive and selective biomarkers for diseases where the onset of the disease is very slow and/or the disease progression is hard to follow, i.e., osteoarthritis (OA). The degradation of Type II collagen has been associated with the disease state of OA. Matrix metalloproteinases (MMPs) are enzymes that catalyze the degradation of collagen and therefore pursued as potential targets for the treatment of OA. Peptide biomarkers of MMP activity related to type II collagen degradation were identified and the presence of these peptides in MMP digests of human articular cartilage (HAC) explants and human urine were confirmed. An immunoaffinity LC/MS/MS assay for the quantification of the most abundant urinary type II collagen neoepitope (uTIINE) peptide, a 45-mer with 5 HO-proline residues was developed and clinically validated. The assay has subsequently been applied to analyze human urine samples from clinical studies. We have shown that the assay is able to differentiate between symptomatic OA and normal subjects, indicating that uTIINE can be used as potential biomarker for OA. This chapter discusses the assay procedure and provides information on the validation experiments used to evaluate the accuracy, precision, and selectivity data with attention to the specific challenges related to the quantification of endogenous protein/peptide biomarker analytes. The generalized approach can be used as a follow-up to studies whereby proteomics-based urinary biomarkers are identified and an assay needs to be developed. Considerations for the validation of such an assay are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call