Abstract

Suppression of type II collagen (COL2A1) cleavage by transforming growth factor (TGF)-β2 in cultured human osteoarthritic cartilage has been shown to be associated with decreased expression of collagenases, cytokines, genes associated with chondrocyte hypertrophy, and upregulation of prostaglandin (PG)E2 production. This results in a normalization of chondrocyte phenotypic expression. Here we tested the hypothesis that PGE2 is associated with the suppressive effects of TGF-β2 in osteoarthritic (OA) cartilage and is itself capable of downregulating collagen cleavage and hypertrophy in human OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with a wide range of concentrations of exogenous PGE2 (1 pg/ml to 10 ng/ml). COL2A1 cleavage was measured by ELISA. Proteoglycan content was determined by a colorimetric assay. Gene expression studies were performed with real-time PCR. In explants from patients with OA, collagenase-mediated COL2A1 cleavage was frequently downregulated at 10 pg/ml (in the range 1 pg/ml to 10 ng/ml) by PGE2 as well as by 5 ng/ml TGF-β2. In control OA cultures (no additions) there was an inverse relationship between PGE2 concentration (range 0 to 70 pg/ml) and collagen cleavage. None of these concentrations of added PGE2 inhibited the degradation of proteoglycan (aggrecan). Real-time PCR analysis of articular cartilage from five patients with OA revealed that PGE2 at 10 pg/ml suppressed the expression of matrix metalloproteinase (MMP)-13 and to a smaller extent MMP-1, as well as the proinflammatory cytokines IL-1β and TNF-α and type X collagen (COL10A1), the last of these being a marker of chondrocyte hypertrophy. These studies show that PGE2 at concentrations much lower than those generated in inflammation is often chondroprotective in that it is frequently capable of selectively suppressing the excessive collagenase-mediated COL2A1 cleavage found in OA cartilage. The results also show that chondrocyte hypertrophy in OA articular cartilage is functionally linked to this increased cleavage and is often suppressed by these low concentrations of added PGE2. Together these initial observations reveal the importance of very low concentrations of PGE2 in maintaining a more normal chondrocyte phenotype.

Highlights

  • Osteoarthritis (OA) is a systemic condition that can affect single or multiple joints and involves degenerative changes in the articular cartilage, remodeling of subchondral bone and limited synovial inflammation [1]

  • Suppression of type II collagen (COL2A1) cleavage by transforming growth factor (TGF)-β2 in cultured human osteoarthritic cartilage has been shown to be associated with decreased expression of collagenases, cytokines, genes associated with chondrocyte hypertrophy, and upregulation of prostaglandin (PG)E2 production

  • Inhibition of collagenase activity by Prostaglandin E2 (PGE2) Our previous studies of cultured human OA articular cartilage explants have shown that conditioned media from cultures maintained with TGF-β2 for 16 days contained concentrations of PGE2 in the range 4 to 125 pg/ml. We used this information to determine whether the addition of exogenous PGE2 concentrations in this range would influence the cleavage of COL2A1 by collagenases in human OA explants

Read more

Summary

Introduction

Osteoarthritis (OA) is a systemic condition that can affect single or multiple joints and involves degenerative changes in the articular cartilage, remodeling of subchondral bone and limited synovial inflammation [1]. Osteoarthritic changes in articular cartilage involve progressive proteolytic degradation of its extracellular matrix, composed mainly of type II collagen (COL2A1) and aggrecan, eventually leading to a loss of the cartilage. This involves phenotypic hypertrophy-related changes in chondrocytes, such as the production of type X collagen (COL10A1) (hypertrophy marker), and the upregulation of collagenase matrix metalloproteinase (MMP)-13, as is seen in the fetal growth plate [1,2,3]. Strong upregulation of COX-2 expression in arthritic synovial membranes and cartilage has led to the suggestion that the selective inhibition of COX-2 may result in an amelioration of arthritic conditions [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call