Abstract

Abstract Traditional investment casting (IC), also known as lost-wax casting, suffers from high tooling cost and long lead-time during fabrication of wax patterns. In recent years, rapid investment casting (RIC) based on AM has become widely accepted in casting foundries due to rapid production of patterns without any tooling requirements. Direct AM production of wax patterns is not only cost-efficient for low volume production but also capable of creating freeform and highly complex geometries that are otherwise extremely difficult or too expensive to cast conventionally. Such advantages provide unlimited opportunities in the cast part design and enable the use of advanced design tools especially advanced optimization tools like topology optimization (TO). In this study, knowledge-based design guidelines for rapid investment casting are developed through streamlined integration of TO with design for investment casting and design for AM principles. Specifically, TO routine based on Solid Isotropic Material with Penalization (SIMP) method using Abaqus Topology Optimization Module (ATOM) has been developed for both material extrusion and investment casting constraints. Part design optimization is demonstrated for this new technique and is validated by a case study using heat-treated ASTM A216 WCB cast carbon steel parts. AM patterns for investment casting are produced using commercially available wax filaments. Wax material extrusion parameters are identified for optimal AM accuracy and surface finish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.