Abstract

Based on the structural shortage of an agricultural labor force and the continuous increase in tomato planting scale in China, as well as the limitation of a greenhouse working environment on the development of tomato picking productivity, a motor-driven end-effector for a tomato picking robot based on a hybrid force/position control strategy was designed. First, a hybrid force/position control strategy was applied to control the picking process. Consistent with this strategy, the mechanical structure design of the end-effector was determined. The maximum torque of the finger joint motor was verified by applying a load to the end-effector fingertip under a parabolic linear angular velocity. Second, the D-H method was used to establish the end-effector single-finger and whole-hand coordinate systems and to perform forward and inverse kinematic analysis. The Monte Carlo method was used to analyze the workspace of the end-effector, and an isochronous interpolation algorithm was used to analyze the angular displacement of the motor. A basic algorithm for starting, stopping and accelerating the finger joints was designed to achieve the smooth movement of the end-effector. The control system for the end-effector was designed based on STM32F103ZET6, and the end-effector remote wireless debugging system was designed based on Tiny6410. Finally, a test prototype of the tomato picking end-effector was manufactured and picking tests were conducted, which showed that our tomato picking end-effector moved smoothly. The proposed control algorithm reduced the impact force and recorded the contact force between the end-effector and the tomato in real time, and the end-effector essentially achieved nondestructive picking. Therefore, our tomato picking end-effector demonstrated good utility in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.