Abstract

• Self-adaptive cooling fins based on Shape Memory Alloys (SMA). • The set of conditions for proper operation are defined analytically. • The impact of an array of SMA fins on thermal resistance is experimentally studied. • Nearly constant wall temperature is achieved for varying heat flux scenarios. Thermal management complexity increases in high-performance chips, where the heat loads vary spatially and temporally, while liquid cooling systems are usually designed for most stringent stationary conditions. Several works developed heat transfer enhancement techniques to increase the cooling capacity of liquid cooled heat sinks, but pumping power is increased in a permanent way due to the addition of elements within the channels. Here, a liquid cooling self-adaptive heat sink that can efficiently adapt the distribution of its heat extraction capacity to time dependent and non-uniform heat load scenarios is proposed. Numerical design of the mesoscale cooling device with bimorph metal/SMA fins, definition of the fabrication and training procedure of the SMA fins to reach the desired behavior and experimental assessment is presented. The capacity of the self-adaptive fins to locally boost the heat transfer is numerically and experimentally demonstrated. Results obtained show that the self-adaptive fins can improve the temperature uniformity by 63% with respect to plain channel. The reduction in thermal resistance using bimorph metal/SMA fins sample allows the surface maximum temperature gradient to remain almost constant although heat flux increases. Energy savings are maximized in applications where partial load intervals contributes significantly to the overall operating period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.