Abstract

This article details the analysis of the thermo-hydraulic performance of a single-phase MEMS Heat sink with pin fins integrated in micro channels. Circular pin-fins with in-line arrangement are considered in this study. The influence of operating and geometric parameters on the performance, (thermal resistance and pressure drop) are studied; the parameters considered include microchannel hydraulic diameter, microchannel spacing, substrate material, pin-fin pitch, and Reynolds number. Additionally, the performance is quantified in terms of a Figure of Merit (FOM) which is the product of normalized thermal resistance and normalized pressure drop. The thermal resistance of heat sink with pin-fin integrated in micro channels is lower than that in heat sinks without pin-fins irrespective of the Reynolds number. On the other hand, the pressure drop associated with heat sink with pin-fins integrated in microchannel is higher than that in heat sinks without pin-fins for all Reynolds number. Also, increase in hydraulic diameter leads to reduction in thermal resistance and increase in pressure drop for a specific Reynolds number. On the other hand, reduction in microchannel spacing leads to reduction in thermal resistance for a specific Reynolds number; the pressure drop is independent of the microchannel spacing. With regards to the influence of substrate material, the thermal resistance decreased with increase in thermal conductivity; the pressure drop is not influenced by changes in substrate material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call