Abstract

One great challenge in the development of portable fuel cell systems is to explore novel electrocatalysts with better performance and lower costs. Here we report a facile strategy to fabricate a ternary nanocomposite based on Pd/MnO2 nanolamella-graphene sheets (Pd/MNL/GS) and demonstrate its application as a multifunctional catalyst for both the direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC). The developed route rationally utilizes graphene as both a green reducing agent in the synthesis of MnO2 nanolamella and a superior supporting material for growing and supporting Pd nanoparticles (NPs). Whether for formic acid oxidation or methanol oxidation, the as-prepared Pd/MNL/GS hybrid has extremely large electrochemically active surface area (ECSA) values and exhibits significantly high forward peak current densities, both of which are nearly 3 times greater than those of the Pd/GS catalyst and 6 times the Pd/Vulcan XC-72 catalyst, revealing that metal Pd can be effectively utilized in the presence of promoter components (MNL and GS). Therefore, such a ternary composite with a sophisticated 2D configuration may bring new design opportunities of high-performance energy conversion devices in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.