Abstract
The eco-friendly sonication and microwave irradiation techniques were used for the straight forward synthesis of the Schiff base platform from sulfathiazole. Herein, Schiff bases were developed and converted to oxazepane derivatives. Compounds were tested for their antimicrobial, antioxidant, in vivo cytotoxicity activity. Moreover, density functional theory (DFT) and molecular docking studies were also carried out to explore the structural prpoperties and interaction of compounds with the receptor molecules. In vitro antimicrobial activity was determined against Gram-positive and Gram-negative strains via microdilution technique, which showed that the synthesized derivatives exhibit significant antimicrobial activity. Furthermore, in vivo cytotoxicity activity of the compounds were carried out via intravenous injection in rats. The results were compared with negative controls and it was observed that most of the synthesized compounds displayed excellent antimicrobial activity and low toxicity in comparison to references and negative controls, respectively. Hemolysis test was carried out for bioactive compounds, and results showed higher hemolysis values of the Schiff bases than the correponding oxazepines and lower hemolytic effects. The free radical inhibittion and antioxidant activity was carried out by using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric reducing antioxidant power (FRAP) methods which suggested that the free radical scavenging activity increases with the presence of hydroxyl group. The Spectral measurements fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and high resolution electrospray ionization mass spectrometry (HRESIMS) confirmed the structure of the compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.