Abstract

New porphyrin analogues have been designed and synthesized using pyrrole, various aldehydes and propionic acid. The formation of desired compounds was analyzed by utilizing the spectral analysis such as IR, NMR and Mass spectroscopy. The studies on absorption and fluorescence emission of synthesized porphyrins were used to evaluate photophysical characteristics such as molar excitation coefficient and Stokes shift. The estimated values of fluorescence lifetime and fluorescence quantum yield of synthesized porphyrins were found to be variable due to thepresence of change in the electron donating and withdrawing characters. The efficiency of generation of singlet oxygen by each synthesized porphyrin as photosensitizer was measured in terms of singlet oxygen quantum yield through photooxidation of 9,10-dimethylantharacene. The obtained singlet oxygen quantum yield values were found to be higher in case of porphyrins those have more electron withdrawing characters rather than donating characters as compared to reference 5,10,15,20-tetraphenylporphyrin (H2TPP). The singlet oxygen quantum yield values of synthesized porphyrins varied from 0.52 to 0.66. Pleasingly, some of synthesized porphyrins are found to be photostable and competent to discover as PDT agents as compared to reference H2TPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call