Abstract

Multipotent antioxidants (MPAO) were synthesized and characterized by FTIR, NMR. The functionalized nanoparticles (IONP@AO) were characterized by FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX. IONP@AO1 and IONP@AO2 have average particles size of 10 nm and 11 nm, respectively. The functionalized IONP@AO has a superparamagnetic nature, with saturation magnetization of 45 emu·g−1. Structure-based virtual screening of the designed MPAO was performed by PASS analysis and ADMET studies to discover and predict the molecule’s potential bioactivities and safety profile before the synthesis procedure. The half-maximal inhibitory concentration (IC50) of DPPH analysis results showed a four-fold decrease in radical scavenging by IONP@AO compared to IONP. In addition to antioxidant activity, IONP@AO showed suitable antimicrobial activities when tested on various bacterial and fungal strains. The advantage of the developed nanoantioxidants is that they have a strong affinity towards biomolecules such as enzymes, proteins, amino acids, and DNA. Thus, synthesized nanoantioxidants can be used to develop biomedicines that can act as antioxidant, antimicrobial, and anticancer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call